

Connection to Electron-Ion Collider and the opportunities

Jianwei Qiu

Brookhaven National Laboratory

Acknowledgement: Much of the physics presented here are based on the work of EIC White Paper Writing Committee put together by BNL and JLab managements, ...

The lepton-hadron scattering facility

- Q² → Measure of resolution
- y → Measure of inelasticity
- X → Measure of momentum fraction of the struck quark in a proton

$$Q^2 = S \times y$$

- □ Complimentary to lepton-lepton and hadron-hadron scattering
- □ Have a number of important advantages:
 - **♦ A well-controlled hard scale: Q² a clean short-distance probe**
 - ♦ Better control of the partonic kinematics
 - ♦ Natural event structure with one large and one small scales TMDs

 - ♦ Well-defined leptonic scattering plan, angular modulation, fluctuation, ...

The lepton-hadron scattering facility

 $Q^2 \rightarrow Measure of resolution$

y → Measure of inelasticity

X → Measure of momentum fraction of the struck quark in a proton

$$Q^2 = S \times y$$

☐ Full of the rich and well-defined observables:

Inclusive events: e+p/A → e'+X

Detect only the scattered lepton in the detector

<u>Semi-Inclusive events</u>: $e+p/A \rightarrow e'+h(\pi,K,p,jet)+X$

Detect the scattered lepton in coincidence with identified hadrons/jets

Exclusive events: $e+p/A \rightarrow e'+p'/A'+h(\pi,K,p,jet)$

Detect every things including scattered proton/nucleus (or its fragments)

New opportunities from pp/pA to ep/eA

- Q² → Measure of resolution
- y → Measure of inelasticity
- X → Measure of momentum fraction of the struck quark in a proton

$$Q^2 = S \times y$$

■ Documentations:

What have we learned from HERA?

Precision tests of QCD and hadron structure

US EIC – Kinematic reach & properties

For e-A collisions at the EIC:

- √ Wide range in nuclei
- √ Variable center of mass energy
- ✓ Wide Q² range (evolution)
- √ Wide x region (high gluon densities)

For e-N collisions at the EIC:

- ✓ Polarized beams: e, p, d/³He
- √ Variable center of mass energy
- ✓ Wide Q² range → evolution
- ✓ Wide x range → spanning from valence to low-x physics
- √ 100-1K times of HERA Luminosity

US EIC – Kinematic reach & properties

For e-A collisions at the EIC:

- √ Wide range in nuclei
- √ Variable center of mass energy
- ✓ Wide Q² range (evolution)
- ✓ Wide x region (high gluon densities)

EIC explores the "sea" and the "glue", the "valence" with a huge level arm

For e-N collisions at the EIC:

- ✓ Polarized beams: e, p, d/³He
- √ Variable center of mass energy
- ✓ Wide Q² range → evolution
- ✓ Wide x range → spanning from valence to low-x physics
- √ 100-1K times of HERA Luminosity

US EIC – Physics vs. Luminosity & Energies

Inclusive DIS

- ☐ Observable: e+p/A → e'+X
 - Detect only the scattered lepton in the detector single scale
 - **♦ Structure functions:** F1, F2, g1, g2, ...
 - \diamond PDFs, Helicity PDFs: q(x), g(x), \triangle q(x), \triangle g(x)
- ☐ Golden measurements:
 - Parton helicity contribution to proton's spin

No other machine in the world can achieve this!

Inclusive DIS

- ☐ Observable: e+p/A → e'+X
 - Detect only the scattered lepton in the detector single scale
 - **♦ Structure functions:** F1, F2, g1, g2, ...
 - \Rightarrow PDFs, Helicity PDFs: q(x), g(x), \triangle q(x), \triangle g(x)
- □ Golden measurements:
 - Nuclear landscape EIC impact on nuclear PDFs

An "easy" measurement for the saturation

☐ EMC effect, Shadowing and Saturation:

□ Questions:

Will the suppression/shadowing continue fall as x decreases?

Could nucleus behaves as a large proton at small-x?

Range of color correlation – could impact the center of neutron stars!

An "easy" measurement for the saturation

☐ EMC effect, Shadowing and Saturation:

□ Questions:

Will the suppression/shadowing continue fall as x decreases?

Could nucleus behaves as a large proton at small-x?

Range of color correlation – could impact the center of neutron stars!

An "easy" measurement for the saturation

☐ EMC effect, Shadowing and Saturation:

Saturation in $F_2(A) - R_{F2}$ decreases until saturation in $F_2(D)$

□ Questions:

Will the suppression/shadowing continue fall as x decreases?

Could nucleus behaves as a large proton at small-x?

Range of color correlation – could impact the center of neutron stars!

Semi-Inclusive DIS

- \square Observable: e+p/A \rightarrow e'+h(π ,K,p,jet)+X
 - Detect the scattered lepton in coincidence with identified hadrons/jets
 - **♦ Differential cross sections, asymmetries, ...**
 - ♦ Polarized & unpolarized TMDs, PDFs, FFs, ...
- □ Natural event structure:

 $Q\gg P_{h_T}\gtrsim \Lambda_{\rm QCD}~$ in the photon-hadron frame

 \Box Collinear QCD factorization holds if P_{hT} integrated:

$$d\sigma_{\gamma^*h\to h'}\propto \phi_{f/h}\otimes d\hat{\sigma}_{\gamma^*f\to f'}\otimes D_{f'\to h'}$$

$$z = \frac{P_h \cdot p}{q \cdot p} \qquad \qquad y = \frac{q \cdot p}{k \cdot p}$$

$$s_{\gamma^*p} = (p+q)^2 \approx Q^2 \left| \frac{1-x_B}{x_B} \right| \approx \frac{Q^2}{x_B}$$

SIDIS is the best for probing TMDs

☐ Naturally, two planes:

$$A_{UT}(\varphi_h^l, \varphi_S^l) = \frac{1}{P} \frac{N^{\uparrow} - N^{\downarrow}}{N^{\uparrow} + N^{\downarrow}}$$

$$= A_{UT}^{Collins} \sin(\phi_h + \phi_S) + A_{UT}^{Sivers} \sin(\phi_h - \phi_S)$$

$$+ A_{UT}^{Pretzelosity} \sin(3\phi_h - \phi_S)$$

☐ Separation of TMDs:

$$A_{UT}^{Collins} \propto \left\langle \sin(\phi_h + \phi_S) \right\rangle_{UT} \propto h_1 \otimes H_1^{\perp}$$

$$A_{UT}^{Sivers} \propto \left\langle \sin(\phi_h - \phi_S) \right\rangle_{UT} \propto f_{1T}^{\perp} \otimes D_1$$

$$A_{UT}^{Pretzelosity} \propto \left\langle \sin(3\phi_h - \phi_S) \right\rangle_{UT} \propto h_{1T}^{\perp} \otimes H_1^{\perp}$$

Collins frag. Func. from e⁺e⁻ collisions

Hard, if not impossible, to separate TMDs in hadronic collisions

Using a combination of different observables (not the same observable): jet, identified hadron, photon, ...

QCD factorization for SIDIS

Ji, Ma, Yuan

☐ Factorization:

□ Low P_{hT} – TMD factorization:

$$\sigma_{\text{SIDIS}}(Q, P_{h\perp}, x_B, z_h) = \hat{H}(Q) \otimes \Phi_f \otimes \mathcal{D}_{f \to h} \otimes \mathcal{S} + \mathcal{O}\left(\frac{P_{h\perp}}{Q}\right)$$

 \square High P_{hT} – Collinear factorization:

$$\sigma_{\text{SIDIS}}(Q, P_{h\perp}, x_B, z_h) = \hat{H}(Q, P_{h\perp}, \alpha_s) \otimes \phi_f \otimes D_{f \to h} + \mathcal{O}\left(\frac{1}{P_{h\perp}}, \frac{1}{Q}\right)$$

□ P_{hT} Integrated - Collinear factorization:

$$\sigma_{\text{SIDIS}}(Q, x_B, z_h) = \tilde{H}(Q, \alpha_s) \otimes \phi_f \otimes D_{f \to h} + \mathcal{O}\left(\frac{1}{Q}\right)$$

Transition from low p_T to high p_T

☐ Two-scale becomes one-scale:

☐ TMD factorization to collinear factorization:

Ji,Qiu,Vogelsang,Yuan, Koike, Vogelsang, Yuan

Two factorization are consistent in the overlap region: $\Lambda_{\rm QCD} \ll p_T \ll Q$

A_N finite – requires correlation of multiple collinear partons

No probability interpretation! New opportunities!

Sivers asymmetries from SIDIS

☐ From SIDIS (HERMES and COMPASS) – low Q:

Drell-Yan A_N: COMPASS, RHIC run 17th, Fermilab Drell-Yan, ...

A surprise story for TMDs

☐ Fit the same low energy data – Sivers function:

 \square Very different "predictions" for A_N at a higher energy:

A surprise story for TMDs

☐ Fit the same low energy data – Sivers function:

'n at a higher energy: □ Very different "predictions"

Q-dependence of the "form" factor

□ Q-dependence of the "form factor":

Konychev, Nadolsky, 2006

At $Q \sim 1$ GeV, $\ln(Q/Q_0)$ term may not be the dominant one!

$$\mathcal{F}^{NP} \approx b^2(a_1 + a_2 \ln(Q/Q_0) + a_3 \ln(x_A x_B) + ...) + ...$$

Power correction? $(Q_0/Q)^n$ -term?

Better fits for HERMES data?

A sufficiently large Q²-range at EIC

Exclusive DIS

- □ Observable: $e+p/A \rightarrow e'+p'/A'+h(\pi,K,p,jet)$
 - Detect every things including scattered proton/nucleus (or its fragments)
 - ♦ Diffractive cross sections: DVCS, J/psi, ...
 - ♦ Polarized & unpolarized GPDs tomographic images, ...
- ☐ Golden measurements:
 - Charge radius, radius of quark distribution, or gluon distribution
 - gluon saturation, ...
- What does the proton look like?

Boosted 3D nucleon structure

☐ High energy probes "see" the boosted partonic structure:

3D momentum space images

2+1D coordinate space images

JLab12 for valence region, EIC for sea and gluon structure

Boosted 3D nucleon structure

☐ High energy probes "see" the boosted partonic structure:

Deformation of parton's confined motion

Deformation of parton's spatial distribution

Another signature for gluon saturation

□ Diffrative cross section:

$$\sigma_{\rm diff} \propto [g(x,Q^2)]^2$$

At HERA

ep: 10-15% diffractive

At EIC eA, if Saturation/CGC

eA: 25-30% diffractive

Another signature for gluon saturation

Diffrative cross section:

Early work - E665 @ FNAL:

Nuclear shadowing, diffractive scattering and low momentum protons in μ Xe interactions at 490 GeV Z. Phys. C 65, 225–244 (1995)

Emergence of hadrons/Jets

□ Hadronization:

- ♦ Single-Parton Fragmentation functions necessary for SIDIS
- ♦ Double-Parton Fragmentation functions new

Heavy quarkonium production - $c\bar{c}~(b\bar{b})$ fragmentation (rate, polarization, hadronization mechanism, ...)

Kang, et al. Fleming et al.

$$\frac{d\hat{\sigma}^{LO}}{dp_T^2} \approx \alpha_s^3 \frac{m_Q^4}{p_T^8}$$

$$\frac{d\hat{\sigma}^{NLO}}{dp_T^2} \approx \alpha_s^4 \frac{m_Q^2}{p_T^6}$$

Light meson production - $u\bar{d}(u\bar{s},...)$ fragmentation (suppressed in production, enhanced in fragmentation, ...)

☐ Jet substructure:

See also Kang's talk

Two-scales: Jet energy >> Jet "mass"

Tool: Soft-Collinear Effective Theory (SCET)

Challenge: Jet in medium?

Hadronization puzzle

☐ Strong suppression of heavy flavors in AA collisions:

☐ Emergence of hadrons:

How do hadrons emerge from a created quark or gluon? How is the color of quark or gluon neutralized?

□ Need a femtometer detector or "scope":

Nucleus, a laboratory for QCD Evolution of partonic properties

In-medium hadronization

□ Unprecedented range of photon energy \vee at EIC: ν =

 \diamond Small ν - in medium hadronization:

Stages of hadronization: parton, pre-hadron, hadron

Large ν - parton multiple scattering:
 Parton energy loss – cold nuclear matter

☐ Heavy quark and quarkonium production:

Nucleus: Femtometer size Vertex detector

Filter for production mechanism!

Emergence of hadrons from partons

How hadrons emerge from colored quarks and gluons?

☐ Unprecedented ∨ range at EIC:

$$\nu = \frac{Q^2}{2mx}$$

Control of ν and medium length!

- ☐ Heavy quark energy loss:
 - Mass dependance of fragmentation

Need the collider energy of EIC and its control on parton kinematics

1-Jettiness cross section in e-A – event shape

$$d\sigma_A \equiv \frac{d^3\sigma(e^- + N_A \to J + X)}{du \; dP_{J_T}(d\tau_1)} \underbrace{\begin{array}{c} \text{1-jettiness: } \\ \text{global event } \\ \text{shape} \end{array}}$$

 $\tau_1 \sim P_{J_T}$

Good measurement of the radiation pattern!

 $au_1 \ll P_{J_T}$

D. Kang, Lee, Stewart, 2013

Summary

- ☐ EIC is a ultimate QCD machine:
 - to discover and explore the quark/gluon structure and properties of hadrons and nuclei,
 - 2) to search for hints and clues of color confinement, and
 - 3) to measure the color fluctuation and color neutralization
- ☐ EIC is a tomographic machine for nucleons and nuclei with a resolution better than 1/10 fm
- ☐ EIC designs explore the polarization and intensity frontier, as well as the frontier of new accelerator/detector technology
- What EIC can do is not only complementary to, but also unique and better than what current facilities around the world can do for exploring QCD and hadron structure

Thanks!

Electron-Ion Collider (EIC)

☐ A giant "Microscope" – "see" quarks and gluons by breaking the hadron

- ☐ Also a sharpest "CT" "imagine" them without breaking the hadron
 - "cat-scan" the nucleon and nuclei with better than 1/10 fm resolution
- ☐ Why now?
 - Exp advances in luminosity, energy reach, detection capability, ...
 - Thy breakthrough in factorization "see" confined quarks and gluons, ...

Density distribution – Fluctuation

□ Azimuthal distribution:

Guo, Liang, Wang, 2010 Pitonyak, Qiu

$$\langle \cos \phi \rangle_{eA} = \frac{2(2-y)\sqrt{1-y}}{1+(1-y)^2} \frac{k_T}{Q} \frac{x_B f_{A\perp}^q(x_B, k_T)}{f_A^q(x_B, k_T)}$$

 \square A-dependence of the k_T -dependent distribution:

$$\begin{split} f_{A\perp}^q(x,k_T) &\approx \left(1 + \frac{\Delta}{2k_T^2} \vec{k}_T \cdot \vec{\partial}_{k_T}\right) \frac{A}{\pi \Delta} \int d^2 q_\perp \exp\left[-\frac{(\vec{k}_\perp - \vec{q}_\perp)^2}{\Delta}\right] f_{N\perp}^q(x,\vec{q}_\perp) \\ f_A^q(x,\vec{k}_\perp) &\approx \frac{A}{\pi \Delta} \int d^2 q_\perp \exp\left[-\frac{(\vec{k}_\perp - \vec{q}_\perp)^2}{\Delta}\right] f_N^q(x,\vec{q}_\perp) \end{split}$$